A Functional equation related to inner product spaces in non-archimedean normed spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

System of AQC functional equations in non-Archimedean normed spaces

‎In 1897‎, ‎Hensel introduced a normed space which does‎ ‎not have the Archimedean property‎. ‎During the last three decades‎ ‎theory of non--Archimedean spaces has gained the interest of‎ ‎physicists for their research in particular in problems coming‎ ‎from quantum physics‎, ‎p--adic strings and superstrings‎. ‎In this paper‎, ‎we prove‎ ‎the generalized Hyers--Ulam--Rassias stability for a‎ ...

متن کامل

AQCQ-Functional Equation in Non-Archimedean Normed Spaces

and Applied Analysis 3 Theorem 1.2 Rassias 18 . Let X be a real normed linear space and Y a real complete normed linear space. Assume that f : X → Y is an approximately additive mapping for which there exist constants θ ≥ 0 and p, q ∈ R such that r p q / 1 and f satisfies the inequality ∥ ∥f ( x y ) − f x − f(y)∥∥ ≤ θ‖x‖p∥∥y∥∥q 1.5 for all x, y ∈ X. Then there exists a unique additive mapping L...

متن کامل

Stability of the quadratic functional equation in non-Archimedean L-fuzzy normed spaces

In this paper, we prove the generalized Hyers-Ulam stability of the quadratic functionalequation$$f(x+y)+f(x-y)=2f(x)+2f(y)$$in non-Archimedean $mathcal{L}$-fuzzy normed spaces.

متن کامل

Additive Ρ –functional Inequalities in Non–archimedean Normed Spaces

In this paper, we solve the additive ρ -functional inequalities ‖ f (x+ y)− f (x)− f (y)‖ ∥∥∥ρ ( 2 f ( x+ y 2 ) − f (x)− f (y) ∥∥∥ (0.1) and ∥∥∥2 f ( x+ y 2 ) − f (x)− f (y) ∥∥∥ ‖ρ ( f (x+ y)− f (x)− f (y))‖ , (0.2) where ρ is a fixed non-Archimedean number with |ρ| < 1 . Furthermore, we prove the Hyers-Ulam stability of the additive ρ -functional inequalities (0.1) and (0.2) in non-Archimedean...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Difference Equations

سال: 2011

ISSN: 1687-1847

DOI: 10.1186/1687-1847-2011-37